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Abstract

Multigrid methods for the Navier–Stokes equations at low speeds and large temperature variations are investigated.

The compressible equations with time-derivative preconditioning and preconditioned flux-difference splitting of the

inviscid terms are used. Three implicit smoothers have been incorporated into a common multigrid procedure. Both full

coarsening and semi-coarsening with directional fine-grid defect correction have been studied. The resulting methods

have been tested on four 2D laminar problems over a range of Reynolds numbers on both uniform and highly stretched

grids. Two of the three methods show efficient and robust performance over the entire range of conditions. In addition,

none of the methods has any difficulty with the large temperature variations.

� 2003 Published by Elsevier B.V.
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1. Introduction

In a now classic work, Brandt [1] defined optimal multigrid convergence as reduction in the discrete

system error to the level of the truncation error in a computational effort that is a small multiple of the

effort to evaluate the discrete system residual. Today this is termed textbook multigrid efficiency (TME).

While it is well known that TME can be achieved for fully elliptic problems, for the equations of fluid

dynamics this performance has only been approached in a few simplified problems. Brandt and Yavneh [2]

solved the incompressible Navier–Stokes equations for high-Reynolds number entering flows on a uniform
rectangular grid. Thomas et al. [3] extended this work and applied it on a stretched rectangular grid to the

boundary layer over a finite flat plate. Roberts et al. [4] solved the incompressible Euler equations on both

unstructured triangular and structured quadrilateral grids for flows through a simple channel and over a

symmetric airfoil. Roberts et al. [5] added nonlocal farfield boundary conditions and again applied it on a

quadrilateral grid to the flow over a symmetric airfoil. A common feature of each of these works is that the

fluid equations are separated into an advection part (advection–diffusion part for the viscous problem) and
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an elliptic part. The advection part is solved by marching in the downstream direction and the elliptic part is

solved by multigrid. However, at this juncture it is not evident how these approaches are to be extended to

general viscous flows with large separated regions.
Hence much effort continues to improve more general multigrid solvers and to extend them to a variety of

problems. We note a number of recent efforts in the following. Pierce and Giles [6] examined methods for

improving the performance of Runge–Kutta based solvers for compressible turbulent flows on stretched

meshes. Steelant et al. [7] did the same for a number of implicit solvers applied to lowMach number laminar

and turbulent flows. Amaladas and Kamath [8] investigated the performance of several implicit time-

marching methods together with a number of upwind schemes for 2D inviscid and viscous compressible

flows. Three papers have dealt with multigrid methods for the 3-D incompressible Navier–Stokes equations.

Drikakis et al. [9] introduced a characteristics-based upwinding and used a smoother based on artificial
compressibility (AC) and Runge–Kutta time-marching. Yuan [10] investigated three implicit time-marching

smoothers together with AC. Montero et al. [11] evaluated both alternating-plane smoothers with standard

coarsening and plane-implicit smoothers with semi-coarsening for the steady equations on staggered grids.

We next take note of a number of efforts to extend or improve the capability of multigrid solvers to treat

a variety of physical phenomena. Epstein et al. [12] presented a 3-D compressible Navier–Stokes solver that

used ENO differencing with defect correction together with Runge–Kutta time-marching for transonic

turbulent flows. Sheffer et al. [13] presented a 2-D solver for compressible reacting flows that used a point

implicit treatment of the chemical source terms, upwind differencing, and explicit time-marching. Gerlinger
et al. [14] addressed the same problem, used point implicit treatment of the source terms with central

differencing and matrix dissipation, added a two-equation turbulence model, and employed an implicit

LUSGS solver as a smoother. As a final example we note the use of multigrid by Caughey [15] in a temporal

subiteration process to converge the equations at each time step in the unsteady flow past both fixed and

moving cylinders of square cross-section at moderate Reynolds numbers.

The present work is directed toward the development of efficient robust multigrid solvers for the com-

pressible Navier–Stokes equations at low speed with large temperature variations. This is important for in-

ternal flows with heat transfer or combustion. To this end we employ time-derivative preconditioning to
remove stiffness at low Mach numbers and preconditioned flux-difference splitting for the inviscid terms so

that the implicit operator will be diagonally dominant. Three promising implicit smoothers have been in-

corporated in a common multigrid procedure. The resulting methods have been tested on four 2D laminar

problems over a range of Reynolds numbers with both uniform and highly stretched grids. Convergence

results from each of these studies are used to evaluate the relative strengths and weaknesses of the three

solvers.
2. Governing equations

The governing equations are written in terms of nondimensional variables defined as follows (starred

quantities are dimensional and subscript r denotes a reference value):

x ¼ x�

Lr

; y ¼ y�

Lr

; t ¼ t�

Lr=Vr
; p ¼ p�

qrV 2
r

; u ¼ u�

Vr
;

v ¼ v�

Vr
; T ¼ T �

Tr
; q ¼ q�

qr

; l ¼ l�

lr

; j ¼ j�

jr

;

where x and y are space dimensions, t, p, u, v, T, q, l and j are time, pressure, x and y velocities, tem-

perature, density, viscosity and thermal conductivity, respectively. A perfect gas with constant specific heats

is assumed. The primary nondimensional parameters are given by
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Ma ¼ Vr
cr
; Re ¼ qrVrLr

lr

; Pr ¼ lrCpr

jr

; Fr ¼ V 2
r

gLr

; Ec ¼ V 2
r

CprTr
¼ ðc� 1ÞMa2;

which are, respectively, the Mach, Reynolds, Prandtl, Froude and Eckert numbers where cr ¼
ffiffiffiffiffiffiffiffiffi
cRTr
p

is the
reference speed of sound, c is the ratio of specific heats, R is the gas constant, Cpr is the constant pressure

specific heat, and g is the gravitational constant. Finally, for low Mach number flows, it is convenient to

subtract off the large background pressure by setting

p ¼ �pp þ p0 ð1Þ

with �pp ¼ ðcMa2Þ�1.
The two-dimensional compressible Navier–Stokes equations with time-derivative preconditioning are

written in vector, conservation-law form

P�1c

oU
ot
þ o

ox
ðE � EvÞ þ

o

oy
ðF � FvÞ ¼ H ; ð2Þ

where

U ¼ ðq; qu; qv; e0ÞT;
E ¼ ðqu; qu2 þ p0; quv; quhtÞT;
F ¼ ðqv; quv; qv2 þ p0; qvhtÞT;

Ev ¼ Rxx oQ
ox
þ Rxy oQ

oy
;

Fv ¼ Ryx oQ
ox
þ Ryy oQ

oy
;

H ¼ Fr�1ð0; 0;�q;�EcqvÞT;
Q ¼ ðp0; u; v; T ÞT;

ð3Þ

Pc is the preconditioning matrix, e0 ¼ qht � Ecp0 is the total energy, and ht ¼ T þ ð1=2ÞEcðu2 þ v2Þ is the

total enthalpy. Note that the source vector H contains a gravitational body force in the negative y-direction

and also that subtraction of the constant background pressure �pp does not change the basic form of the

equations.

The density is given by the equation of state for an ideal gas

q ¼ ð1þ p0=�ppÞ=T ; ð4Þ

and the diffusion coefficient matrices are given by

Rxx ¼ Re�1

0 0 0 0

0 4
3
l 0 0

0 0 l 0

0 4
3
Eclu Eclv Pr�1j

2
6664

3
7775; Rxy ¼ Re�1

0 0 0 0

0 0 � 2
3
l 0

0 l 0 0

0 Eclv � 2
3
Eclu 0

2
6664

3
7775;

Ryx ¼ Re�1

0 0 0 0

0 0 l 0

0 � 2
3
l 0 0

0 � 2
3
Eclv Eclu 0

2
6664

3
7775; Ryy ¼ Re�1

0 0 0 0

0 l 0 0

0 0 4
3
l 0

0 Eclu 4
3
Eclv Pr�1j

2
6664

3
7775:

ð5Þ



P.M. Sockol / Journal of Computational Physics 192 (2003) 570–592 573
The preconditioning matrix Pc is adapted from the work of Turkel [16]. First consider the inviscid

equations written in terms of the primitive variables V ¼ ðp0; u; v; S0ÞT, with dS0 ¼ dp0 � c2 dq and

c2 ¼ Ma�2T . These are written as

P�1p

oV
ot
þ Ap

oV
ox
þ Bp

oV
oy
¼ 0; ð6Þ

where

Ap ¼
u qc2 0 0

q�1 u 0 0

0 0 u 0

0 0 0 u

2
664

3
775; Bp ¼

v 0 qc2 0

0 v 0 0

q�1 0 v 0

0 0 0 v

2
664

3
775: ð7Þ

For this system the simplest form of Turkel�s preconditioner is written as

P�1p ¼
m�2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775; ð8Þ

where m2 ¼ b2=c2 and b2 is chosen to bring the system eigenvalues closer together at low Mach numbers.

The eigenvalues of PpAp are given by

k ¼ u� u0 � c0; u; u; u� u0 þ c0 ð9Þ

with

c20 ¼ u20 þ b2;

u0 ¼
1

2
ð1� m2Þu:

ð10Þ

The conservation-law form is then given by Pc ¼ MPpM�1 with M ¼ oU=oV . Finally, following Choi and

Merkle [17], we express Eq. (2) in terms of the ‘‘viscous’’ variables Q

P�1Q

oQ
ot
þ o

ox
ðE � EvÞ þ

o

oy
ðF � FvÞ ¼ H ; ð11Þ

where P�1Q ¼ MP�1p N and N ¼ oV =oQ.
For most flows it is sufficient to set b2 equal to the square of the local speed together with lower and

upper limits. However, for some low Reynolds number cases, convergence is improved by introducing the

viscous limit of Choi and Merkle [17]. Hence we take

b2 ¼ min½maxðb2
0; u

2 þ v2; b2
vÞ; c2�; ð12Þ

where b2
0 is a global user specified lower limit and

b2
v ¼

aða� 1Þu2
1þ ða� 1Þu2=c2 : ð13Þ

Here a ¼ RCV=Reds, RCV is the ratio of CFL to von Neumann numbers (also user specified) and

Reds ¼ Rejujds is the local cell Reynolds number with u the convective velocity and ds the spacing between

cell centers.
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3. Discrete formulation

The governing equations are solved on a stretched rectangular grid with unknowns stored at cell centers.
While extension to a general curvilinear coordinate system is straightforward, the simpler system is suffi-

cient for our current purposes. Integration of Eq. (11) over a cell together with Euler implicit time dif-

ferencing gives

P�1Q ðdxdy=dtÞDQ ¼ �Rnþ1; ð14Þ

where dx and dy are cell dimensions, dt is the time step, DQ ¼ Qnþ1 � Qn, and the area-weighted residual R

is given by

R ¼ dxðE � Rxx dx�1dxQ� Rxy dy�1dyQÞdy þ dyðF � Ryx dx�1dxQ� Ryy dy�1dyQÞdx� H dxdy: ð15Þ

Here dx and dy are central difference operators in x and y, respectively.

The cell-face inviscid fluxes E and F in Eq. (15) are approximated by preconditioned flux- difference

splitting [18]. This choice is normally dictated by the need for a more accurate capturing of discontinuities

such as shocks or contact surfaces. In the present case, however, since we intend to employ implicit

methods, this choice is made as a means of obtaining positive inviscid contributions to the global matrix to

improve the efficiency of the relaxation schemes. It should be noted that with time-derivative precondi-

tioning all the wave speeds are of the same order, see Eq. (9), and the matrix condition number is signif-

icantly reduced at low Mach numbers. Hence we write

E ¼ 1

2
EðU�Þ½ þ EðUþÞ� � 1

2
P̂P�1c P̂Pc ÂAc

��� ���ðUþ � U�Þ; ð16Þ

where U� and Uþ are, respectively, left and right states, Ac ¼ oE=oU ; ÂAc denotes evaluation at an average

state, and P�1c jPcAcj ¼ MP�1p jPpApjM�1. Here jPpApj is computed using the eigenvectors and absolute

eigenvalues of PpAp. Eq. (16) is rewritten in terms of the ‘‘viscous’’ variables Q

E ¼ 1

2
EðQ�Þ½ þ EðQþÞ� � 1

2
ÂAaðQþ � Q�Þ; ð17Þ

where Aa ¼ MP�1p jPpApjN . The left and right states Q� are given by an upwind-biased interpolation using

van Leer�s MUSCLE approach [19]

Q�
i�1

2
;j
¼ Qi;j �

1

4
rx ð1
�
� jxÞd�x þ ð1� jxÞdþx

�
Qi;j; ð18Þ

where Qi;j represents a cell-averaged value, d�x and dþx are backward and forward differences in x, respec-

tively, and for rx ¼ 1, jx determines the spatial accuracy. Setting jx ¼ �1 corresponds to a fully upwind

scheme, jx ¼ þ1 to a central difference scheme, and jx ¼ 1=3 to a third-order upwind-biased scheme.

Setting rx ¼ 0 reduces the scheme to first order. In the present implementation the average state Q̂Q is taken

as a simple average of Q� and Qþ and the use of limiters is not required. The cell-face flux F in the

y-direction is approximated by expressions similar to Eqs. (16) and (17) with Ac replaced by Bc ¼ oF =oU
and Eq. (18) for Q�i�1=2;j is replaced by one for Q�i;j�1=2 with interpolation in y instead of x.

Eq. (14) is linearized about known values at level n and only first-order contributions from E and F are

retained on the left-hand side

P�1Q dxdy=dt þ fd�x ðSþx ÂAþÞ þ dþx ðS�x ÂA�Þ � dxRxx dx�1dxgdy
h
þfd�y ðSþy B̂BþÞ þ dþy ðS�y B̂B�Þ � dyRyy dy�1dygdx� Ddxdy

i
DQ ¼ �Rn; ð19Þ
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where S�x and S�y are half cell shift operators in �x and �y, respectively, and

A� ¼ 1

2
ðA� AaÞ; B� ¼ 1

2
ðB� BaÞ; ð20Þ

with A ¼ MApN ; B ¼ MBpN and D ¼ oH=oQ. Note that A and B are evaluated at the average state and that

the variations of Aa and Ba with Q have been neglected.

The discrete formulation is completed by the specification of the time step dt. We set

dxdy=dt ¼ ½rðPpApÞdy þ rðPpBpÞdx�=CFL; ð21Þ

where the spectral radii r are given by

rðPpApÞ ¼ ju� u0xj þ c0x;

rðPpBpÞ ¼ jv� u0y j þ c0y :
ð22Þ

Here c0x and u0x are given by Eq. (10), while c0y and u0y are given by the same expressions with u replaced

by v.
4. Boundary conditions

With the implicit relaxation methods used in this work, very simple boundary condition treatments have

proven quite effective. Boundary values are located on the physical boundary, one half cell from the nearest

interior point. The surface fluxes are obtained directly from Eqs. (3) with the normal derivatives in the

viscous fluxes approximated by one-sided second-order differences. At an inlet u, v, and T are specified,
while p0 is obtained by linear extrapolation from the interior. At a solid wall u and v are specified, T is either

specified or obtained from a second-order one-sided adiabatic wall condition, and p0 is again found by

linear extrapolation. Finally, at an outlet surface p0 is specified and u, v, and T are obtained by linear

extrapolation from the interior. On the left-hand side of Eq. (19), boundary conditions on DQ are treated

implicitly. Thus, where a component of Q is specified, the corresponding component of DQ is set to zero.

On the other hand, where an element of Q is found by linear extrapolation or adiabatic wall condition, that

element of DQ is set equal to its value at the interior point one half cell away. These conditions are rep-

resented by a simple transfer relation

DQb ¼ LbDQ; ð23Þ

where DQb is the boundary value, DQ is the value at the interior point, and Lb is a diagonal matrix. At an

inlet or solid wall with T specified, Lb ¼ Diagð1; 0; 0; 0Þ; at an adiabatic wall, Lb ¼ Diagð1; 0; 0; 1Þ; and at an

outlet, Lb ¼ Diagð0; 1; 1; 1Þ.
5. Smoothing methods

It is generally recognized that the smoothing or relaxation method is the most important part of a

multigrid solution process. In the present work we investigate three implicit methods as part of a common

multigrid process. Each of these can be found in the literature, hence only a brief description is given here.

The descriptions are presented in terms of the global matrix form of the discrete system of equations.

Expansion of Eq. (19) gives



576 P.M. Sockol / Journal of Computational Physics 192 (2003) 570–592
Di;jDQi�1;j þ Ai;jDQi;j�1 þ �BBi;jDQi;j þ �CCi;jDQi;jþ1 þ Ei;jDQiþ1;j ¼ �Ri;j; ð24Þ

where the block matrix coefficients, A to E, are given in Appendix A. When the cell ði; jÞ is located adjacent

to a boundary, Eq. (23) is used to eliminate the boundary value, the coefficient of the boundary value is set

to zero, and the central coefficient �BBi;j is modified accordingly. An example of such a modified coefficient is

also given in Appendix A.

The first smoother is Line Block Gauss–Seidel (LBGS). For sweeps in the þx-direction, this is written
as

B
0
i;j ¼ Bi;j � Ai;jC

0
i;j�1

B
0
i;jC

0
i;j ¼ �CCi;j

B
0
i;jDQ

�
i;j ¼ �Ri;j � Di;jDQi�1;j � Ai;jDQ�i;j�1

9>=
>; for j ¼ 1; . . . ; ny ;

DQi;j ¼ DQ�i;j � C
0
i;jDQi;jþ1

o
for j ¼ ny ; . . . ; 1;

9>>>>=
>>>>;

for i ¼ 1; . . . ; nx; ð25Þ

where C
0
i;j and DQ�i;j are stored along the line and there is one LU decomposition of B

0
i;j per cell during the

first j-sweep. For cases with a predominant flow in the x-direction, LBGS is implemented by alternately

sweeping in the þx- and �x-directions. For predominantly recirculating flows, we use a symmetric pattern

of sweeps in the þx-, þy-, �y-, and �x-directions.
The second smoother is LU Symmetric Gauss–Seidel (LUSGS). This is written as

Bi;jC
0
i;j ¼ �CCi;j

Bi;jE
0
i;j ¼ Ei;j

Bi;jDQ�i;j ¼ �Ri;j � Ai;jDQ�i;j�1 � Di;jDQ�i�1;j

9>>=
>>; for i ¼ 1; . . . ; nx; j ¼ 1; . . . ; ny ;

DQi;j ¼ DQ�i;j � C
0
i;jDQi;jþ1 � E

0
i;jDQiþ1;j

o
for i ¼ nx; . . . ; 1; j ¼ ny ; . . . ; 1;

ð26Þ

where C
0
i;j, E

0
i;j and DQ�i;j are stored over the field and there is one LU decomposition of Bi;j per cell in the

first sweep. Note that this form of LUSGS requires less global storage and one less LU decomposition per

cell than the usual form. For cases with a predominant flow in the x-direction, LUSGS is implemented by

alternately switching the directions of the first and second sweeps.

The third and final smoother is Block Incomplete LU decomposition (BILU). This is written as

B
0
i;j ¼ Bi;j � Ai;jC

0
i;j�1 � Di;jE

0
i�1;j

B
0
i;jC

0
i;j ¼ �CCi;j

B
0
i;jE
0
i;j ¼ Ei;j

B
0
i;jDQ

�
i;j ¼ �Ri;j � Ai;jDQ�i;j�1 � Di;jDQ�i�1;j

9>>>>>=
>>>>>;

for i ¼ 1; . . . ; nx; j ¼ 1; . . . ; ny ;

DQi;j ¼ DQ�i;j � C
0
i;jDQi;jþ1 � E

0
i;jDQiþ1;j

o
for i ¼ nx; . . . ; 1; j ¼ ny ; . . . ; 1;

ð27Þ

where C
0
i;j, E

0
i;j and DQ�i;j are stored over the field and one LU decomposition of B

0
i;j per cell is performed

during the first sweep. Again for cases with a predominant flow in the x-direction, BILU is implemented by

alternately switching the directions of the first and second sweeps.

In each of the three smoothers, the interior unknowns are updated by Qnþ1
i;j ¼ Qn

i;j þ DQi;j only after DQi;j

has been obtained for the entire field. Following this the boundary values of Qnþ1
i;j are computed based on

the new interior values.
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6. Multigrid and defect correction

Relaxation methods, such as those of the previous section, are in general much more efficient at reducing
short-wavelength error components on a given grid than those of longer wavelength. Multigrid seeks to

overcome this problem by transferring the long-wave components of the solution to a sequence of coarser

grids where relaxation is more effective and much cheaper. Since the FAS–FMG (full approximation

scheme–full multigrid) technique used in this work has been well documented in the literature, the present

description of the multigrid process will be brief. The focus will, instead, be on the current implementation

and in particular on those aspects that were found to be important in achieving a fast Navier–Stokes solver.

Introduce a sequence of grids, k ¼ m to 1, where m is the finest and each grid k < m is coarser than grid

k þ 1 in one or both directions. For k ¼ m we seek the solution of the nonlinear system

NðQkÞ ¼ 0 ð28Þ

with N representing the area-weighted residual given by Eq. (15). On any grid k let Sk denote a single
smoothing pass of the system

~NNðQkÞ ¼ F k: ð29Þ

Here ~NN is an approximation to N in which one or both convective operators may be replaced by a first-

order discretization and F k is defined below. Next introduce a fine-to-coarse restriction operator ÎI kkþ1 for

unknowns, a restriction operator Ikkþ1 for residuals, Rk ¼ F k � ~NNðQkÞ, and a coarse-to-fine prolongation

operator Ikþ1k for corrections. With these definitions, the FAS multigrid cycle Mk for improving an ap-

proximation Qk is defined recursively as follows:
For k ¼ m, F k  ~NNðQkÞ � NðQkÞ.
For k ¼ 1, solve Eq. (29) by several smoothing sweeps.

For k > 1, do these steps:

(a) smooth on grid k,
Qk  ðSkÞm1Qk;

(b) restrict Qk to grid k � 1;

Qk�1  ÎI k�1k Qk;

(c) restrict Rk to grid k � 1 and form F k�1,

F k�1  ~NN Qk�1� �
þ Ik�1k Rk;

(d) perform c multigrid cycles on Qk�1,

Qk�1  Mk�1� �c
Qk�1;

(e) prolong corrections to grid k,

Qk  Qk þ Ikk�1 Qk�1
�

� ÎI k�1k Qk
�
;

(f) smooth on grid k,

Qk  ðSkÞm2Qk:

In general m1 and m2 can be considered functions of the grid level k.
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For c ¼ 1, a V-cycle, V ðm1; m2Þ, is obtained. For c ¼ 2 the more robust W-cycle, W ðm1; m2Þ, is obtained.
We also introduce the F-cycle, which provides coarse grid performance that is intermediate between that

of the V- and W-cycles. This is defined recursively as a c ¼ 2 cycle in which the first iteration at grid k is
an F-cycle and the second is a V-cycle. Finally, we obtain the full FAS–FMG technique by starting the

computation on a very coarse grid, iterating to �convergence� with the FAS process, and interpolating the

result to obtain initial values on the next finest grid. In this way the first approximation on the finest grid

is already close in much of the domain, an important consideration in nonlinear problems. Convergence

criteria for each stage in the FAS–FMG process as used in the present work are described in the next

section.

The sequence of grids, k ¼ m to 1, is given by either full or semi-coarsening. In full coarsening, each cell

on grid k is obtained by combining four cells on grid k þ 1 such that there are half as many cells in each
direction on grid k as on k þ 1. This tends to work well for flows that are predominantly recirculating and

where the grid is only moderately stretched. For flows with a predominant flow direction and strong grid

stretching in the cross-stream direction, which is common in many engineering applications, a more robust

albeit more expensive solver can be obtained by using semi-coarsening. In this case each cell on grid k is

obtained by combining two cells in the flow direction on grid k þ 1 such that there are half as many cells in

the flow direction and the same number in the cross-stream direction on grid k as on k þ 1. Both of these

situations will be illustrated with sample problems.

The restriction operators, ÎI kkþ1 for unknowns and Ikkþ1 for residuals, both use full weighting. For ÎI kkþ1
interior values are given by an area-weighted average over the fine grid cells from which the coarse cell is

constructed. The unknown coarse-grid boundary values are then updated using the methods of section

four. Since the residuals are conservatively differenced and area weighted, Ikkþ1 is obtained by summing the

fine-grid fluxes over the boundaries of the coarse grid cell and then adding the contributions from the fine-

grid source terms. The prolongation operator, Ikþ1k for corrections, is given by bilinear interpolation in the

equally spaced computational domain. Once the interior points have been corrected, the unknown

boundary values are again updated by the methods of section four. The same method is also used to

interpolate converged results from a coarse grid to initialize values on the next finest grid.
Another way to increase solver robustness is through the use of fine-grid defect correction. Normally

this involves using first-order convective operators in both directions in ~NN . This produces a large fine-

grid source term F m and substantially slows convergence. In the current work it has been found that

using a first-order operator in the flow direction while retaining a higher order in the cross-stream di-

rection gives an efficient yet quite robust solver. The source term F m is updated every one to four fine-

grid sweeps.

The multigrid solvers employed in this work have been coded to permit V-,W-, or F-cycles, including the

possibility of k- dependent nu1 and m2. While all the computations reported here were performed with
W ð1; 0Þ from the fine grid, as these were the most robust for all methods on all problems, higher values of m1
were sometimes used during the starting process on coarser grids. Finally, we note that the different

sweeping patterns introduced in Section 5 in conjunction with each of the smoothers have been interleaved

with the multigrid process. A sweep counter is established for every grid level and on each visit to that level

the next direction in the sweep pattern for that grid is performed. This proved to be sufficient to give all the

convergence benefits of the sweeping pattern.
7. Convergence criteria

In establishing convergence criteria for an FAS–FMG procedure it is useful to employ a measure that

does not change by a large amount from one grid to the next. To this end we introduce the following L2

residual norm



P.M. Sockol / Journal of Computational Physics 192 (2003) 570–592 579
L2Rk ¼
Xnkx ;nky
i;j¼1

Rk
i;j

��� ���2 4nkxn
k
y

, 9=
;

1
2

8><
>:

,
d �AAk; ð30Þ

where nkx and nky are the number of cells on grid k in x and y, respectively, and d �AAk is the average cell area on

level k. Then on the finest grid m convergence is taken as

L2Rm < 10�6: ð31Þ

In most cases this produces at least four significant figures in the solution. For intermediate grids k > 1 in
the FAS–FMG process, convergence before interpolating to the next finer grid is taken as

L2Rk < 10�2; ð32Þ

with a maximum of 50 sweeps on level k, and for the coarsest grid k ¼ 1 �solution� is given by

L2R1 < L2Rk=10; ð33Þ

where now L2Rk is the most recent error on the current finest grid and a maximum of four sweeps is taken

on the coarsest grid.
8. Results and discussion

Four numerical test problems have been chosen to evaluate the efficiency and robustness of the multigrid

method with each of the three smoothers. In three of the problems, existing numerical results are used to

check the accuracy of the current approach. In two of the problems, large temperature variations are used

to test the ability of the solvers in this area. For each problem the behavior of the solvers is tested over a

range of Reynolds numbers Re on uniform grids. In addition, although uniform grids are adequate to

resolve the physics in each case, the solvers are also tested over a range of stretched grids for each problem.
Finally, since each of these cases is in the incompressible range, the reference Mach number Ma is set to

10�4 for all computations.

For each test problem and smoother the parameters, b2
0, RCV, and CFL, have been chosen to be nearly

optimum over the range of Reynolds numbers presented. At higher values of Re it may be necessary to

change one or more of these parameters. For example for the case of the lid-driven cavity at Re¼ 7500 (not

included below), good convergence is obtained for CFL¼ 10 on grids 5 and 6 while CFL¼ 40 is used for all

cases presented at Re¼ 5000 and below.

Note all computations were performed on an SGI Octane workstation with an R12000 (300 MHz) CPU.

8.1. Lid-Driven cavity

The lid-driven cavity is a common benchmark for recirculating flows. The second-order streamfunction-

vorticity results of Ghia et al. [20], computed on a uniform 256� 256 grid, are generally accepted as

standard. Isothermal flow is set up in a square cavity with a top lid that moves to the right at constant speed

u ¼ 1. In the current work, for this flow, the residual Rk is evaluated with third-order upwind differences in

both directions on all grids. Streamfunction contours, computed on a uniform 128� 128 grid, for
Re ¼ 1000 and 5000, are shown in Fig. 1. Profiles of u on the vertical centerline, computed on uniform

128� 128 and 256� 256 grids, for Re ¼ 100, 1000 and 5000, are compared with the standard results in

Fig. 2. The agreement on both grids for all three Reynolds numbers is very good.



Fig. 1. Streamfunction contours for lid-driven cavity at Re ¼ 1000 and 5000.

Fig. 2. Profiles of u on vertical centerline for lid-driven cavity on two uniform grids at three Reynolds numbers. Curves are present

results; symbols are from Ghia et al. [20] on a 256� 256 grid.
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The first set of performance results is for a uniform 128� 128 grid with Re varying from 100 to 5000. Six

grids are used in the full coarsening multigrid process with computation starting on grid 2. Computations

are performed with b2
0 ¼ 0:4, RCV¼ 2.2 and CFL¼ 40.0 for each method on all grids. Convergence plots of

the mean fine grid residual L2R6 vs. work units are shown in Fig. 3 for all three smoothers. One work unit is

defined as the CPU time required to evaluate the residual of the discrete equations on the fine grid, 0.088 s

on the SGI for this case. Note that in the residual evaluation, which is the same for all three methods, the

flux across each cell boundary is computed only once. In this figure each symbol on a plot corresponds to a
single fine-grid sweep and the horizontal offset of the first point from the origin is the initialization time on

the coarser grids. For these computations all three smoothers are comparable with the faster convergence of

LUSGS and BILU compensated for by the shorter cpu time per sweep for LBGS.

The second set of results is for a stretched 128� 128 grid at Re ¼ 1000 with the grid spacing at all four

walls varying from ds0 ¼ 0:002 to 0.00002. One-dimensional grid stretching in each direction is performed



Fig. 3. Lid-driven cavity: convergence plots for each method on a uniform 128� 128 grid.

Fig. 4. Lid-driven cavity: convergence plots for each method on a stretched 128� 128 grid for Re ¼ 1000.
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by a procedure that permits specification of the grid spacing at each end of the interval. This is described in
Appendix B. Six grids are used in the multigrid process with computation starting on grid 2. The values of

b2
0, RCV and CFL are the same as in the previous set. Convergence plots of fine grid L2R6 vs. work units are

shown in Fig. 4 for all three smoothers. For the stretched grid LBGS and BILU are again comparable. The

performance of LUSGS, however, rapidly degrades as the stretching increases.

8.2. Buoyancy-driven cavity

This is a flow in a square cavity with insulated horizontal walls, vertical walls with constant temperatures
Th on the left and Tc on the right, and gravity force in the negative y-direction. We consider the particular

case of Th=Tc ¼ 4 and varying Rayleigh number Ra, where Ra ¼ DTq2
rgCprL3

r=lrjr with DT ¼ 2ðTh � TcÞ=
ðTh þ TcÞ. Yu et al. [21] have reported detailed results for this problem, which were obtained with a
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least-squares finite-element method. The computations were performed on a 129� 129 moderately stret-

ched grid with bi-quadratic elements. In order to compare with these results we use constant viscosity l and

thermal conductivity j and set Fr ¼ 1:2, Pr ¼ 0:7. In the present work the residual Rk is again evaluated
with third-order upwind differences in both directions on all grids. Streamfunction contours, computed on a

uniform 128� 128 grid, for Ra ¼ 105 and 106, are shown in Fig. 5. Profiles of u on the vertical centerline,

computed on uniform 128 by 128 and 256� 256 grids, for Ra ¼ 103, 105 and 106, are compared with those

of Yu et al. [21] in Fig. 6. The agreement on both grids at Ra ¼ 103 and 105 is very good, both with each

other and with the reference, but those at 106, while agreeing with each other, disagree substantially with

those of the reference. In [21] the streamfunction plot for this case shows a somewhat different structure

with two additional secondary vortices. The present calculations cast this finding into doubt. Note our

computations on a 512� 512 grid agree with our results on the two coarser grids.
Fig. 5. Streamfunction contours for buoyancy-driven cavity at Ra ¼ 105 and 106.

Fig. 6. Profiles of u on vertical centerline for buoyancy-driven cavity on two uniform grids at three Rayleigh numbers. Curves are

present results; symbols are from Yu et al. [21] on a 129� 129 grid. See text for discussion of disagreement at Ra¼ 106.
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The first set of performance results for this flow is for a uniform 128� 128 grid with Ra varying from

103 to 107. Six grids are used in the full coarsening multigrid process with computation starting on grid 1.

Computations are performed with b2
0 ¼ 0:3, RCV¼ 0.8, and CFL¼ 40.0 for each method on all grids

once the finest grid is reached. Lower values of CFL are used during the starting process. Convergence

plots of fine grid L2R6 vs. work units are shown in Fig. 7 for all three smoothers. For this case one work

unit is 0.089 s. In this case all three show similar behavior with convergence degrading substantially at

Ra ¼ 107.

The second set of results is for a stretched 128� 128 grid at Ra ¼ 105. In this case the stretching is only in

the x-direction with the grid spacing at both hot and cold walls varying from ds0 ¼ 0:002 to 0.00002. The

grid in the y-direction is kept uniform. Six grids are used in the multigrid process with computation starting

on grid 1. The values of b2
0, RCV and CFL are the same as in the previous set. Convergence plots of fine
Fig. 7. Buoyancy-driven cavity: convergence plots for each method on a uniform 128� 128 grid.

Fig. 8. Buoyancy-driven cavity: convergence plots for each method on a stretched 128� 128 grid at Ra ¼ 105.
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The first set of performance results is for a uniform 480� 64 grid with Re varying from 200 to 800. These

calculations use full coarsening with fine-grid defect correction in the x-direction. Defect corrections are

performed every 2–6 fine-grid sweeps. Five grids are used in the multigrid process with computation
starting on grid two. Computations are performed with b2

0 ¼ 0:8, RCV¼ 0 (no viscous correction to b2) and

CFL¼ 80.0 for each method on all grids. Convergence plots of fine grid L2R5 vs. work units are shown in

Fig. 11 for all three smoothers. Note the zig-zag behavior of the plots is a result of an increase in L2R5 each

time a new fine-grid defect correction is performed. Here one work unit is 0.17 s. All three methods show

similar behavior for this case. It is also obvious, however, that the performance of all three methods suffers

serious deterioration as Reynolds number is increased to 600 and 800. For Re ¼ 600 or 800, the deterio-

ration with increasing grid stretching is even worse.

In order to obtain a more robust method we introduce semi-coarsening and retain fine-grid defect
correction, both in x. Again we use a uniform 480� 64 grid with five grid levels and start the computation

on grid two. For these computations, defect corrections were performed every two fine grid sweeps.

Computations are performed with b2
0 ¼ 0:8 for LBGS and BILU; however, LUSGS performs better in

semi-coarsening for b2
0 ¼ 1:8. Again we set RCV¼ 0 and CFL¼ 80.0 for each method on all grids. Con-

vergence plots of fine grid L2R5 vs. work units for these methods are shown in Fig. 12. With semi-coars-

ening, LBGS and BILU show similar performance, but LUSGS take about twice as long to converge. Note

that on a finer grid, 960� 128, the relative performance of LUSGS with semi-coarsening is even worse. The

deterioration of performance with Reynolds number, however, is now quite modest. Of course, as expected,
the total number of work units is larger. Note the zig-zag behavior, when it occurs, is much less pronounced

as the fine-grid defect correction is now much smaller.

The next set of results is for a stretched 480� 64 grid at Re ¼ 800. Stretching is only in the y-direction

with the grid spacing at the bottom and top walls varying from ds0 ¼ 0:004 to 0.00004 while the spacing at

the center (top of the step) is held fixed at dsc ¼ 0:008. Spacing in the x-direction is kept uniform. As above

we use semi-coarsening with defect corrections, both in x, every two fine-grid sweeps. Values of b2
0, RCV

and CFL are the same as in the previous set. Convergence plots of fine grid L2R5 vs. work units for these

methods are shown in Fig. 13. Again LBGS and BILU are similar, and LUSGS is much worse. What is
most interesting is the insensitivity of these performance results to grid stretching. This is certainly desirable
Fig. 11. Backward-facing step: convergence plots for each method on a uniform 480� 64 grid with full coarsening and defect cor-

rection in x.



Fig. 12. Backward-facing step: convergence plots for each method on a uniform 480� 64 grid with semi-coarsening and defect

correction in x.

Fig. 13. Backward-facing step: convergence plots for each method on a stretched 480� 64 grid with semi-coarsening and defect

correction in x at Re ¼ 800.
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in a robust method. Note that LBGS and to a lesser degree BILU perform better on stretched than uniform

grids for this problem. This may be a result of the better resolution of the flow at the top of the step. The

maximum residual during fine grid convergence occurs just off the wall on the step face a little below the

top.

8.4. Backward-facing step with heat transfer

As a final test case, one with a large temperature variation, we consider the backward-facing step with

heat transfer. The temperature of the lower channel wall in the previous flow is raised to twice the inlet
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temperature and an adiabatic wall condition is imposed on the upper channel wall and the step face. Again

viscosity l and thermal conductivity j are held constant. For this flow as before the residual Rk is evaluated

with third-order upwind differences in the y-direction on all grids while in the x-direction we use first-order
upwind with defect correction to third-order on the fine grid only. Streamfunction contours, computed on a

uniform 480� 64 grid, for Re ¼ 400 and 800, are shown in Fig. 14. Note that at Re ¼ 800 the lower

recirculating zone is larger and the upper recirculating zone is no longer present.

The first set of performance results is for a uniform 480� 64 grid with Re varying from 200 to 800. These

calculations use full coarsening with fine-grid defect correction in the x-direction every 2 fine-grid sweeps.

Five grids are used in the multigrid process with computation starting on grid two. Computations are

performed with b2
0 ¼ 0:6, RCV¼ 0 and CFL¼ 80.0 for each method on all grids. Convergence plots of fine

grid L2R5 vs. work units are shown in Fig. 15 for all three smoothers. Here one work unit is 0.17 s. In this
case all methods show comparable performance with negligible deterioration for increasing Reynolds

number.

Next we apply the same methods on a stretched 480� 64 grid at Re ¼ 800. Stretching is only in the

y-direction with grid spacing at the bottom and top walls varying from ds0 ¼ 0:004 to 0.00004 while grid
Fig. 14. Streamfunction contours for backward-facing step with heat transfer at Re ¼ 400 and 800.

Fig. 15. Backward-facing step with heat transfer: convergence plots for each method on a uniform 480� 64 grid with full coarsening

and defect correction in x.





Fig. 18. Backward-facing step with heat transfer: convergence plots for each method on a stretched 480� 64 grid with semi-coarsening

and defect correction in x at Re ¼ 800.
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in Fig. 17 for all three smoothers. Here LBGS and BILU give comparable performance while LUSGS is

much worse.

Finally, we consider stretched grid performance with semi-coarsening and defect correction in x. Values
of b2

0, RCV and CFL are the same as in the previous set. Convergence plots of fine grid L2R5 vs. work units

are shown in Fig. 18 for all three smoothers. Again LBGS and BILU give comparable performance while

LUSGS is much worse with convergence almost ceasing at the two finest wall grid spacings.
9. Conclusions

The performance of multigrid solvers for the compressible Navier–Stokes equations at low speeds and
large temperature variations has been investigated. Each solver employed time-derivative preconditioning

together with preconditioned flux-differencing splitting of the inviscid terms. Three implicit smoothers were

incorporated in a common multigrid procedure and the resulting methods were tested on four 2D laminar

problems over a range of Reynolds numbers with both uniform and highly stretched grids.

For predominantly recirculating flows on uniform grids, the performance of all three methods is com-

parable and really quite good although a moderate slowing of convergence is seen with increasing Reynolds

number. On highly stretched grids, however, the convergence rate of LUSGS deteriorates quite rapidly

while the performance of LBGS and BILU remains insensitive to the stretching. It should be noted that in
the case of the buoyancy-driven cavity flow none of the methods has any difficulty with the four to one ratio

of wall temperatures.

For cases with a predominant flow direction, it appears that a robust method can be constructed on the

basis of semi-coarsening and fine grid defect correction, both in the main flow direction. Such methods cost

more per multigrid cycle but tend to converge more reliably and in fewer cycles. With semi-coarsening

LBGS and BILU show comparable good performance on both uniform and highly stretched grids again

with moderate slowing of convergence at the higher Reynolds numbers. The performance of LUSGS with

semi-coarsening, on the other hand, degrades substantially on uniform grids and may get even worse on
highly stretched grids. In the case of the backward-facing step with heat transfer, we again note that none of

the methods has any difficulty with the two to one ratio of bottom wall to inlet temperatures.
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From the present studies it is evident that an efficient robust multigrid solver can be based on either

LBGS or BILU with either full or semi-coarsening, depending on the problem. It should be noted that

BILU tends to be the more robust of the two showing a net decrease in cpu time at the more difficult higher
Reynolds number cases albeit at a cost of a significant increase in global storage. Finally, we also note

the benefit to be obtained from the use of directional defect correction in the case of a predominant flow

direction.
Appendix A

The block matrix coefficients in Eq. (24) are obtained by expansion of Eq. (19). For an interior cell these

are given as follows:

Di;j ¼ � ÂAþi�1=2;j
h

þ Rxx
i�1=2;jdx

�1
i�1=2

i
dyj;

Ai;j ¼ � B̂Bþi;j�1=2
h

þ Ryy
i;j�1=2dy

�1
j�1=2

i
dxi;

�CCi;j ¼ þ B̂B�i;jþ1=2
h

� Ryy
i;jþ1=2dy

�1
jþ1=2

i
dxi;

Ei;j ¼ þ ÂA�iþ1=2;j
h

� Rxx
iþ1=2;jdx

�1
iþ1=2

i
dyj;

Bi;j ¼ þ ÂAþiþ1=2;j
h

� ÂA�i�1=2;j þ Rxx
iþ1=2;j dx

�1
iþ1=2 þ Rxx

i�1=2;j dx
�1
i�1=2

i
dyj

þ B̂Bþi;jþ1=2
h

� B̂B�i;j�1=2 þ Ryy
i;jþ1=2 dy

�1
jþ1=2 þ Ryy

i;j�1=2 dy
�1
j�1=2

i
dxi

þ P�1Q

� �
i;j
dxi dyj=dt � Di;j dxi dyj:

ðA:1Þ

When the cell ði; jÞ is located adjacent to a boundary, as noted in Section 4, the inviscid surface flux is

obtained directly from Eq. (3) and the viscous flux is approximated by a one-sided second-order difference.

As a result the above matrix coefficients must be modified. As an example, let the cell face ði� 1=2; jÞ lie on
the left boundary. Then in Eq. (A.1) the coefficients Ai;j;Ci;j and Ei;j are unchanged, Di;j is set to zero, and

Bi;j is changed as follows:

Bi;j ¼ þ ÂAþiþ1=2;j
h

þ Rxx
iþ1=2;j dx

�1
iþ1=2 þ 3Rxx

i�1=2;j dx
�1
i�1=2

i
dyj � Ai�1=2;j

h
þ 3Rxx

i�1=2;j dx
�1
i�1=2

i
dyjLb

þ B̂Bþi;jþ1=2
h

� B̂B�i;j�1=2 þ Ryy
i;jþ1=2 dy

�1
jþ1=2 þ Ryy

i;j�1=2dy
�1
j�1=2

i
dxi

þ P�1Q

� �
i;j
dxi dyj=dt � Di;j dxi dyj: ðA:2Þ

Appendix B

We have employed a mesh clustering procedure that permits specification of the grid spacing at both

ends of the interval. Let sj, j ¼ 0 to n, denote the grid points along a line with the locations s0; s1; sn�1; sn
specified. Also define dsj � ðsjþ1 � sj�1Þ=2: Then we take

� d1
j � �sj�1 þ 2sj � sjþ1 � pjdsj ¼ 0 for j ¼ 1; . . . ; n;

� d2
j �

sj � s1 ¼ 0 for j ¼ 1;

�pj�1 þ 2pj � pjþ1 ¼ 0 for j ¼ 2; . . . ; n� 1;

sj � sn�1 ¼ 0 for j ¼ n� 1:

8><
>:

ðB:1Þ
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Eq. (B.1) are linearized about the current state Qk
j , where

Qk
j ¼ ðsj; pjÞ

T
with DQj ¼ Qkþ1

j � Qk
j and DQ0 ¼ DQn:

Then

�AjDQj�1 þ BjDQj � CjDQjþ1 ¼ Dj ðB:2Þ

with

Aj ¼
1� pj=2 0

0 0

	 

; Bj ¼

2 �dsj
1 0

	 

; Cj ¼

1þ pj=2 0

0 0

	 

for j ¼ 1;

Aj ¼
1� pj=2 0

0 1

	 

; Bj ¼

2 �dsj
0 2

	 

; Cj ¼

1þ pj=2 0

0 1

	 

for j ¼ 2; . . . ; n� 2;

Aj ¼
1� pj=2 0

0 0

	 

; Bj ¼

2 �dsj
1 0

	 

; Cj ¼

1þ pj=2 0

0 0

	 

for j ¼ n� 1;

Dj ¼
d1
j

d2
j

" #
:

ðB:3Þ

Q0
j is initialized by distributing sj uniformly between s0 and sn and setting pj ¼ 0 for all j. Then Eq. (B.2)

is solved for DQj by block-tridiagonal inversion and Qk
j is updated. The process continues until the L2 norm

of Dpj is reduced to less than 10�6, typically 5–15 iterations. For a highly stretched case, the resulting grid

spacing increases rapidly but smoothly from the beginning of the interval and then levels off to become

nearly constant over the center of the interval.
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